Printed Organic Electronic Sensors

There has been great progress recently in the use of organic and carbon-based materials as the active conductors in electronic sensors for chemical species (analytes). Three principal classes of such materials are conjugated oligomers/polymers, carbon nan

  • PDF / 1,050,404 Bytes
  • 26 Pages / 439.37 x 666.142 pts Page_size
  • 81 Downloads / 230 Views

DOWNLOAD

REPORT


Abstract There has been great progress recently in the use of organic and carbonbased materials as the active conductors in electronic sensors for chemical species (analytes). Three principal classes of such materials are conjugated oligomers/ polymers, carbon nanotubes, and molecularly imprinted polymers. These materials may be equipped with receptor subunits for analyte binding specificity, and show changed conductances when analytes bind or adsorb. There has been further advancement in the assembly of devices based on these materials into circuit elements that provide output suitable for data processing and networking. Examples of sensors based on these principles, and the mechanisms by which they transduce chemical to electrical information, are reviewed in this chapter. Keywords Carbon nanotubes, Chemical sensors, Molecular imprinting, Organic transistors, Organic semiconductors

Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Materials Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Field-Effect Transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Responses by Unfunctionalized and Nonspecifically Functionalized OSCs . . . . . . . . . . . . . 2.1 OFET Responses to Polar Vapors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Varying Device Geometry and OFET Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 SWNT Chemiresistors and OFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Graphene Chemiresistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

193 193 195 197 197 197 199 201

H. Kong, T.J. Dawidczyk, and H.E. Katz (*) Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, MD 21218, USA e-mail: [email protected] R. Ozgun and A.G. Andreou Department of Electrical and Computer Engineering, Johns Hopkins University, Barton 105, 3400 North Charles Street, Baltimore, MD 21218, USA D. Filippini (ed.), Autonomous Sensor Networks: Collective Sensing Strategies for Analytical Purposes, 191 Springer Series on Chemical Sensors and Biosensors (2013) 13: 191–216 DOI 10.1007/5346_2012_30, # Springer-Verlag Berlin Heidelberg 2012, Published online: 28 July 2012

192

H. Kong et al.

3 Chemically Designed Analyte Receptors Appended to OSCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Molecular Imprinting of Polymers for Selective Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Application to Networks: Printing and Logic Signaling . . . . . . . . . . . . . .