Reversible Systems
- PDF / 18,367,204 Bytes
- 325 Pages / 468 x 684 pts Page_size
- 19 Downloads / 258 Views
		    1211 M. B. Sevryuk
 
 Reversible Systems
 
 Springer-Verlag Berlin Heidelberg New York London Paris Tokyo
 
 Author
 
 Mikhail B. Sevryuk Consulting Editor
 
 Vladimir I. Arnol'd Leningrad Branch of V. A. Steklov Mathematical Institute Fontanka 27, 191011 Leningrad, 0-11, USSR
 
 ISBN 3·540·16819·2 Springer-Verlag Berlin Heidelberg New York ISBN 0·387·16819-2 Springer-Verlag New York Berlin Heidelberg
 
 This work is subject to copyright. All rights are reserved. whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich,
 
 © Springer-Verlag Berlin Heidelberg 1986 Printed in Germany Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 2146/3140-543210
 
 'l'ABLE OF CONTENTS
 
 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . Chapter 1.
 
 TORI OF PERTUEBATIONS OF INTEGRABLE REVERSIBLE DIFFEml0RPHISIIS AND VECTORFIELDS
 
 22
 
 Part 1. The discrete time case: Kolmogorov tori of perturbations of reversible diffeomorphisms
 
 22
 
 § 1.1 . Preliminaries
 
 22
 
 § 1.2. Pr inc ipal theorem
 
 24
 
 § 1.3. I1ain lemma . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . .
 
 28
 
 § 1.4. Termination of the proof of the principal theorem..
 
 46
 
 § 1.5. Reversible diffeomorphisms of a plane
 
 56
 
 § 1.6. Appendix . . . . . . . . . . . . . . • . . . . . . • . . . . . . . . . . . . . . . . . . . . .
 
 58
 
 Part 2. The continuous time case: Kolmogorov tori of perturbations of reversible vectorfields
 
 66
 
 § 1.7. Preliminaries . . . . . . . . . . . . . . . . . . • • . . . . . . . . . . . . . . . . . .
 
 66
 
 § 1.8. Principal theorem . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . ....
 
 69
 
 § 1.9. Hain lemma.........................................
 
 70
 
 § 1.10. Final remarks •.•..••..•........•.•.................
 
 84
 
 § 1. 11. Appendix . . . • • . . . . . . . . . . . . . . • . . . . . . . . . . . . . . • . . . . . . . .
 
 87
 
 Chapter 2. NORHAL FORMS FOR REVERSIBLE DIFFEOHORPHISHS AND VECTORFIELDS NEAR AN EQUILIBRIUM AND THEIR KOLHOGOROV TORI . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . .
 
 92
 
 § 2.1. Linear reversible and infinitesimally
 
 reversible operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . §
 
 92
 
 Normal forms for slightly elliptic reversible diffeomorphisms near a fixed point
 
 102
 
 § 2.3. Weakly reversible elliptic hyperbolic diffeo-
 
 morphisms near a fixed point
 
 110
 
 IV
 
 § 2.4. Weakly reversible elliptic diffeomorphisms
 
 near a fixed point .........•.•................••.•. 126 § 2.5. Normal forms for slightly elliptic reversible
 
 vectorfields near an equilibrium
 
 132
 
 § 2.6. Weakly reversible elliptic hyperbolic
 
 vectorfields near
 
 equilibrium
 
 136
 
 § 2.7. Weakly reversible elliptic vectorfields
 
 near an		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	