TiO2/Fly Ash Nanocomposite for Photodegradation of Organic Pollutant
Photocatalytic materials are currently intensively studied because of their high potential in UV and solar-light water purification. The photocatalysis is based on charge carrier generation and mobility of electron/hole pairs. Usually, a large amount of p
- PDF / 1,334,638 Bytes
- 24 Pages / 439.37 x 666.142 pts Page_size
- 89 Downloads / 183 Views
Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Organic Pollutants in Waste Waters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synthesis and Characterization of Nanophotocatalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sol–Gel Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hydrothermal Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coprecipitation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TiO2/Fly Ash Photocatalytic Nanocomposites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Removal of Pollutant from Wastewaters Using Nanophotocatalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 5 7 7 10 11 11 15 19 21
Abstract
Photocatalytic materials are currently intensively studied because of their high potential in UV and solar-light water purification. The photocatalysis is based on charge carrier generation and mobility of electron/hole pairs. Usually, a large amount of photoexcited charge it is lost by recombination, there are necessary coupled materials, highly active photocatalysts, and a very good electron acceptor semiconductor – that means composite material. There are several catalysts reported in the literature. Among the metal oxides such as TiO2, ZnO, SnO2, and CeO2, CuO is extensively used in heterogeneous photocatalysis for degradation of organic compounds degradation. Its activity can be enhanced by several L. Favier Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR6226, Rennes, France M. Harja (*) Faculty of Chemical Engineering and Environmental Protection, Department of Chemical Engineering, “Gheorghe Asachi” Technical University of Iasi, Iasi, Romania e-mail: [email protected]; [email protected] © Springer Nature Switzerland AG 2020 O. V. Kharissova et al. (eds.), Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, https://doi.org/10.1007/978-3-030-11155-7_11-2
1
2
L. Favier and M. Harja
methods such as doping, surface modification, and shape tailoring. These triggered a large volume of publications, and studies demonstrated tha
Data Loading...