Ultra-Wideband Pulse-based Radio Reliable Communication over a Wideb

Today's booming expanse of personal wireless radio communications is a rich source of new challenges for the designer of the underlying enabling technologies. Because the wireless channel is a shared transmission medium with only very limited resources, a

  • PDF / 10,725,647 Bytes
  • 262 Pages / 439.37 x 666.142 pts Page_size
  • 44 Downloads / 172 Views

DOWNLOAD

REPORT


ANALOG CIRCUITS AND SIGNAL PROCESSING SERIES Consulting Editor: Mohammed Ismail. Ohio State University

For other titles published in this series, go to http://www.springer.com/series/7381

Wim Vereecken



Michiel Steyaert

Ultra-Wideband Pulse-based Radio Reliable Communication over a Wideband Channel

123

Wim Vereecken Katholieke Universiteit Leuven Dept. Electrical Engineering (ESAT) Kasteelpark Arenberg 10 3001 Leuven Belgium [email protected]

Michiel Steyaert Katholieke Universiteit Leuven Dept. Electrical Engineering (ESAT) Kasteelpark Arenberg 10 3001 Leuven Belgium [email protected]

ISBN 978-90-481-2449-7 e-ISBN 978-90-481-2450-3 DOI 10.1007/978-90-481-2450-3 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009926324 c Springer Science+Business Media B.V. 2009  No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

Contents

Preface

ix

List of Abbreviations and Symbols

xiii

1. DIGITAL COMMUNICATIONS OVER ANALOG CHANNELS

1

1.1

Wideband radio: spectral and spatial efficiency . . . . . . . .

6

1.2

Increasing the spectral bandwidth . . . . . . . . . . . . . . .

7

1.3

Onwards to software defined radio? . . . . . . . . . . . . . .

11

1.4

Interference immunity issues of wideband radio . . . . . . . .

14

1.5

Organizational overview of this text . . . . . . . . . . . . . .

18

2. MODULATION-AWARE ERROR CODING

23

2.1

Why error coding works . . . . . . . . . . . . . . . . . . . .

25

2.2

How error coding works . . . . . . . . . . . . . . . . . . . .

27

2.3

Coding: the concept of distance

. . . . . . . . . . . . . . . .

30

2.4

Coding for a narrowband, noisy channel . . . . . . . . . . . .

33

2.5

Coding and modulation for a wideband channel: OFDM . . .

35

2.6

Wideband single-carrier modulation . . . . . . . . . . . . . .

38

2.7

Conclusions on single- and multicarrier systems

44

. . . . . . .

v

vi

Contents

3. MODULATION-AWARE DECODING: SIGNAL RECONSTRUCTION

47

3.1

Principles of signal reconstruction . . . . . . . . . . . . . . .

48

3.2

ISSR decoding for wideband QPSK . . . . . . . . . . . . . .

52

3.3

Implementation aspects of the ISSR algorithm

. . . . . . . .

55

3.4

Performance of the ISSR algorithm

. . . . . . . . . . . . . .

57

3.5

ISSR under non-ideal circumstances . . . . . . . . . . . . . .

60

4. BENEFITS OF ISI IN THE INDOOR ENVIRONMENT

65

4.1

Power delay spread . . . . . . . . . . . . . . . . . . . . . . .

65

4.2

Frequency-selective versus flat fading . . . . . . . . . . . . .

69

4.3

Coherence time . . . . . . . . . . .