Commercialization of Thermoelectric Technology
- PDF / 112,267 Bytes
- 9 Pages / 612 x 792 pts (letter) Page_size
- 74 Downloads / 228 Views
0886-F01-04.1
Commercialization of Thermoelectric Technology
Francis R. Stabler GM Powertrain, General Motors Corporation Pontiac, MI 48340-2925
ABSTRACT
Thermoelectric technology capable of solid state electric power generation and cooling has been has been known for almost 180 years. Only in the past 50 years has this technology found its way out of the laboratory and into niche military, space, and commercial products. Most of the profitable commercial products have made their appearance in the past decade. Many of you are working hard to advance the state of the art in thermoelectric materials, and I am sure that you do not want to wait another 180 years, 50 years, or even another decade to commercialize your results. There are many potential ways to commercialize this technology, but the area that I think represents the biggest market is the automotive industry. There are over 17 million automobiles sold in the US each year and over 60 million worldwide. With the possible exception of the electric power industry, I know of no other market segment that is even close to the potential of the automotive industry for using a high volume of thermoelectric materials. Every vehicle produced has an electrical system supplied by a one to two kilowatt generator with increasing power demand as electrical features are added. A high percentage of vehicles have air conditioning systems with 3 to 5 kilowatts of cooling. Sufficiently advanced thermoelectric materials can be the heart of systems that supplement or replace the mechanical or electromechanical devices performing these functions today. This paper addresses the boundary conditions for the function, quantity, and value needed to commercialize thermoelectric technology. Timing to introduce subsystems with this technology is also addressed. Thermoelectric technology has to compete with the existing technologies and other emerging technologies to be successfully commercialized. While it seems out of reach today, there is even the potential that sufficiently advanced thermoelectric materials and device construction could one day replace the internal combustion engine and even rival fuel cells in energy conversion efficiency.
INTRODUCTION
Historically, thermoelectric technology is not new. When Thomas John Seebeck discovered the Seebeck effect in 1823, there was no rush to commercialize thermoelectric generators. When Jean Charles Athanase Peltier discovered the Peltier effect eleven years later in 1834, there was no rush to produce thermoelectric cooling devices. In fact, for over a century, these effects remained little more than laboratory curiosities. Alternate technologies for power generation and cooling were invented and went through intense technical development. We would likely live in a very different world today if thermoelectric power generation and cooling had become the
0886-F01-04.2
mainstream technical path and had been the main focus of scientific investigation and development for the past 180 years. The primary product based on the Seebeck effect
Data Loading...