DBCSMOTE: a clustering-based oversampling technique for data-imbalanced warfarin dose prediction

  • PDF / 2,041,886 Bytes
  • 13 Pages / 595.276 x 790.866 pts Page_size
  • 98 Downloads / 182 Views

DOWNLOAD

REPORT


METHODOLOGY

Open Access

DBCSMOTE: a clustering-based oversampling technique for dataimbalanced warfarin dose prediction Yanyun Tao1, Yuzhen Zhang2* and Bin Jiang2 From The 18th Asia Pacific Bioinformatics Conference Seoul, Korea. 18-20 August 2020

Abstract Background: Vitamin K antagonist (warfarin) is the most classical and widely used oral anticoagulant with assuring anticoagulant effect, wide clinical indications and low price. Warfarin dosage requirements of different patients vary largely. For warfarin daily dosage prediction, the data imbalance in dataset leads to inaccurate prediction on the patients of rare genotype, who usually have large stable dosage requirement. To balance the dataset of patients treated with warfarin and improve the predictive accuracy, an appropriate partition of majority and minority groups, together with an oversampling method, is required. Method: To solve the data-imbalance problem mentioned above, we developed a clustering-based oversampling technique denoted as DBCSMOTE, which combines density-based spatial clustering of application with noise (DBCSCAN) and synthetic minority oversampling technique (SMOTE). DBCSMOTE automatically finds the minority groups by acquiring the association between samples in terms of the clinical features/genotypes and the warfarin dosage, and creates an extended dataset by adding the new synthetic samples of majority and minority groups. Meanwhile, two ensemble models, boosted regression tree (BRT) and random forest (RF), which are built on the extended dataset generateed by DBCSMOTE, accomplish the task of warfarin daily dosage prediction. Results: DBCSMOTE and the comparison methods were tested on the datasets derived from our Hospital and International Warfarin Pharmacogenetics Consortium (IWPC). As the results, DBCSMOTE-BRT obtained the highest Rsquared (R2) of 0.424 and the smallest mean squared error (mse) of 1.08. In terms of the percentage of patients whose predicted dose of warfarin is within 20% of the actual stable therapeutic dose (20%-p), DBCSMOTE-BRT can achieve the largest value of 47.8% among predictive models. The more important thing is that DBCSMOTE saved about 68% computational time to achieve the same or better performance than the Evolutionary SMOTE, which was the best oversampling method in warfarin dose prediction by far. Meanwhile, in warfarin dose prediction, it is discovered that DBCSMOTE is more effective in integrating BRT than RF for warfarin dose prediction. (Continued on next page)

* Correspondence: [email protected] 2 the Cardiovascular Department, the First Affiliated Hospital of Soochow University, Shizi Street 100, Suzhou 215005, China Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provid