Effects of long-distance transportation on blood constituents and composition of the nasal microbiota in healthy donkeys

  • PDF / 1,509,755 Bytes
  • 10 Pages / 595.276 x 790.866 pts Page_size
  • 51 Downloads / 184 Views

DOWNLOAD

REPORT


RESEARCH ARTICLE

Open Access

Effects of long-distance transportation on blood constituents and composition of the nasal microbiota in healthy donkeys Fuwei Zhao1,2*†, Guimiao Jiang2,3†, Chuanliang Ji2, Zhiping Zhang4, Weiping Gao2, Peixiang Feng2, Haijing Li2, Min Li2, Haibing Liu2, Guiqin Liu5, Humberto B. Magalhaes6 and Jianji Li1*

Abstract Background: This study aims to determine the effects of transportation on the nasal microbiota of healthy donkeys using 16S rRNA sequencing. Results: Deep nasal swabs and blood were sampled from 14 donkeys before and after 21 hours’ long-distance transportation. The values of the plasma hormone (cortisol (Cor), adrenocorticotrophic hormone (ACTH)), biochemical indicators (total protein (TP), albumin (ALB), creatinine (CREA), lactic dehydrogenase (LDH), aspartate transaminase (AST), creatine kinase (CK), blood urea (UREA), plasma glucose (GLU)) and blood routine indices (white blood cell (WBC), lymphocyte (LYM), neutrophil (NEU), red blood cell (RBC), hemoglobin (HGB)) were measured. 16S rRNA sequencing was used to assess the nasal microbiota, including alpha diversity, beta diversity, and phylogenetic structures. Results showed that levels of Cor, ACTH, and heat-shock protein 90 (HSP90) were significantly increased (p < 0.05) after longdistance transportation. Several biochemical indicators (AST, CK) and blood routine indices (Neu, RBC, and HGB) increased markedly (p < 0.05), but the LYM decreased significantly (p < 0.05). Nine families and eight genera had a mean relative abundance over 1%. The predominant phyla in nasal microbiota after and before transportation were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Transportation stress induced significant changes in terms of nasal microbiota structure compared with those before transportation based on principal coordinate analysis (PCoA) coupled with analysis of similarities (ANOSIM) (p < 0.05). Among these changes, a notably gain in Proteobacteria and loss in Firmicutes at the phylum level was observed. Conclusions: These results suggest transportation can cause stress to donkeys and change the richness and diversity of nasal microbiota. Further studies are required to understand the potential effect of these microbiota changes on the development of donkey respiratory diseases. Keywords: donkey, transport stress, 16S rRNA sequencing, nasal microbiota

* Correspondence: [email protected]; [email protected] † Fuwei Zhao and Guimiao Jiang contributed equally to this work. 1 College of Veterinary Medicine, Yangzhou University, 225009 Yangzhou, P.R. China Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or o