Electronic Packaging Applications

Electronic packaging is a field in rapid evolution due to strong and competing customer demands for increased functionality and performance, further miniaturization, heightened reliability, and lower costs. Such product drivers cause a myriad of reliabili

  • PDF / 5,432,550 Bytes
  • 30 Pages / 547.087 x 685.984 pts Page_size
  • 24 Downloads / 229 Views

DOWNLOAD

REPORT


Electronic Pa 36. Electronic Packaging Applications

Jeffrey C. Suhling, Pradeep Lall

Electronic packaging is a field in rapid evolution due to strong and competing customer demands for increased functionality and performance, further miniaturization, heightened reliability, and lower costs. Such product drivers cause a myriad of reliability challenges for the engineer involved in the mechanical design of electronic systems, and several methods of experimental mechanics have become critical tools for the design and development of electronic products. In this chapter, we present an overview of important experimental mechanics applications to electronic packaging. Mechanics and reliability issues for modern electronic systems are reviewed, and the challenges facing the experimentalist in the packaging field are discussed. Finally, we review the state of the art in measurement technology, with the presentation of selected key applications of experimental solid mechanics to the electronic packaging field. These important applications are grouped by the goal of the measurement being made, including delamination detection, silicon stress characterization, evaluation of solder joint deformations and strains, warpage measurements, evaluation of behavior under transient loading, and material characterization. For each application, the important experimental techniques are discussed and sample results are provided.

36.1 Electronic Packaging ............................. 1017 36.1.1 Packaging of Electronic Systems ... 1017 36.1.2 Electronic Packaging Failure Modes ...................................... 1018

36.3 Detection of Delaminations ................... 1022 36.3.1 Acoustic Microscopy .................... 1022 36.4 Stress Measurements in Silicon Chips and Wafers .......................................... 1024 36.4.1 Piezoresistive Stress Sensors ........ 1024 36.4.2 Raman Spectroscopy ................... 1027 36.4.3 Infrared Photoelasticity............... 1029 36.4.4 Coherent Gradient Sensing .......... 1030 36.5 Solder Joint Deformations and Strains .... 1031 36.5.1 Moiré Interferometry .................. 1032 36.5.2 Digital Image Correlation............. 1034 36.6 Warpage and Flatness Measurements for Substrates, Components, and MEMS .. 1036 36.6.1 Holographic Interferometry and Twyman–Green Interferometry .... 1036 36.6.2 Shadow Moiré............................ 1037 36.6.3 Infrared Fizeau Interferometry ..... 1038 36.7 Transient Behavior of Electronics During Shock/Drop ................................ 1039 36.7.1 Reference Points with High-Speed Video ............... 1039 36.7.2 Strain Gages and Digital Image Correlation ...... 1040 36.8 Mechanical Characterization of Packaging Materials.......................... 1041 References .................................................. 1042

a typical product based on microelectronics is a set of silicon chips that contain devices, integrated circuits, micro-electromechanical systems (MEMS), and photonic components that perform desired functions. These

Part D 36

Moder