Life-cycle assessment and techno-economic analysis of biochar produced from forest residues using portable systems

  • PDF / 4,952,766 Bytes
  • 25 Pages / 595.276 x 790.866 pts Page_size
  • 49 Downloads / 179 Views

DOWNLOAD

REPORT


WOOD AND OTHER RENEWABLE RESOURCES

Life-cycle assessment and techno-economic analysis of biochar produced from forest residues using portable systems Kamalakanta Sahoo 1,2

3

2

1

4

& Amit Upadhyay & Troy Runge & Richard Bergman & Maureen Puettmann & Edward Bilek

1

Received: 30 August 2019 / Accepted: 1 October 2020 # The Author(s) 2020

Abstract Purpose Producing biochar from forest residues can help resolve environmental issues by reducing forest fires and mitigating climate change. However, transportation and storage of biomass to a centralized facility are often cost-prohibitive and a major hurdle for the economic feasibility of producing biobased products, including biochar. The purpose of this study was to evaluate the environmental impacts and economic feasibility of manufacturing biochar from forest residues with small-scale portable production systems. Methods This study evaluated the environmental performance and economic feasibility of biochar produced through three portable systems (biochar solutions incorporated (BSI), Oregon Kiln (OK), and air curtain burner (ACB)) using forest residues in the United States (US). Cradle-to-grave life-cycle assessment (LCA) and techno-economic analysis (TEA) were used to quantify environmental impacts and minimal selling price (MSP) of biochar respectively considering different power sources, production sites, and feedstock qualities. Results and discussions The results illustrated that the global warming (GW) impact of biochar production through BSI, OK, and ACB was 0.25–1.0, 0.55, and 0.61-t CO2eq/t biochar applied to the field, respectively. Considering carbon-sequestration, 1-t of biochar produced with the portable system at a near-forest site and applied to the field reduced the GW impact by 0.89–2.6 t CO2eq. For biochar production, the environmental performance of the BSI system improved substantially (60–70%) when it was powered by a gasifier-based generator instead of a diesel generator. Similarly, near-forest(off-grid) biochar production operations performed better environmentally than the operations at in-town sites due to the reduction in the forest residues transportation emissions. Overall, the net GW impact of biochar produced from forest residues can reduce environmental impacts (i.e., 1–10 times lower CO2eq emissions) compared with slash-pile burning. The MSP per tonne of biochar produced through BSI, OK, and ACB was $3,000–$5,000, $1,600, and $580 respectively considering 100 working days per year. However, with improved BSI systems when allowed to operate throughout the year, the MSP can be reduced to below $1000/t of biochar. Furthermore, considering current government grants and subsidies (i.e.,$12,600/ha for making biochar production from forest residues), the MSP of biochar can be reduced substantially (30–387%) depending on the type of portable system used. Conclusion The portable small-scale production systems could be environmentally beneficial and economically feasible options to make biochar from forest residues at competitive prices gi