Metallic Micro and Nano Materials Fabrication with Atomic Diffusion

This book focuses on the metallic Nano- and Micro-materials (NMMs) fabricated by physical techniques such as atomic diffusion. A new technology for fabricating NMMs by atomic diffusion is presented. Two kinds of atomic diffusion are treated; one is a

  • PDF / 7,131,986 Bytes
  • 241 Pages / 439.37 x 666.142 pts Page_size
  • 90 Downloads / 217 Views

DOWNLOAD

REPORT


For further volumes: http://www.springer.com/series/4288

Masumi Saka Editor

Metallic Micro and Nano Materials

Fabrication with Atomic Diffusion

123

Editor Prof. Masumi Saka Department of Nanomechanics, Graduate School of Engineering Tohoku University Aoba 6-6-01, Aramaki Aoba-ku, Sendai 980-8579 Japan e-mail: [email protected]

ISSN 1612-1317

e-ISSN 1868-1212

ISBN 978-3-642-15410-2

e-ISBN 978-3-642-15411-9

DOI 10.1007/978-3-642-15411-9 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2010936451 Ó Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: deblik, Berlin Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Recently, various kinds of micro and nano metallic materials have been produced by using different chemical or physical techniques, and these materials have been found to possess excellent mechanical, electrical, optical and thermal properties compared with their bulk states. These micro and nano metallic materials are therefore expected to be key elements of future technologies and will be widely used to overcome worldwide issues in energy, food, health, etc. Needless to say, in many cases for particular applications, further research and development are needed to resolve the wide gap that exists between research status and their availability for practical applications. This book covers many peripheral technologies that can be employed to effectively use existing micro and nano materials for future applications, as well as the relevant fabrication technologies. In this book we mainly examine physical methods for forming micro and nano metallic materials by controlling the diffusion of atoms, although many micro and nano metallic materials can be synthesized based on chemical reactions. Two different atomic diffusion phenomena that can be utilized for fabricating micro and nano metallic materials are introduced. The first of these is ‘electromigration’, which is driven by a high density flow of electrons, and the other is ‘stress migration’, which relies on a gradient of hydrostatic stress in the material. Techniques for evaluating the mechanical and electrical