Nanoparticle Embedded Nanofiber Synthesis and Evaluation of Usability on Biomedical Applications
- PDF / 378,939 Bytes
- 8 Pages / 432 x 648 pts Page_size
- 60 Downloads / 254 Views
MRS Advances © 2018 Materials Research Society DOI: 10.1557/adv.2018.200
Nanoparticle Embedded Nanofiber Synthesis and Evaluation of Usability on Biomedical Applications Dilek Çökeliler Serdaroğlu,1 Hilal K. Korkusuz,1 Mine Karakaya,1 İlknur Dönmez,1 Mehmet A. Ünal2 and Sundaram Gunasekaran3 1 Biomedical Engineering, Başkent University, Bağlıca Campus, 06790 Ankara, Turkey 2 Physics Engineering, Ankara University, 06100, Ankara, Turkey 3 Biological Systems Engineering, University of Wisconsin Madison, Madison, WI 53760, U.S.A
ABSTRACT When nanoparticles and nanofibers combined at the nanoscale, they could create new features in the material and therefore new areas of use. In this study, polyvinylpyrrolidone (PVP) nanofibers containing carbon nanoparticles produced by dense medium plasma technology have been fabricated via electrospinning technique for the first time, a new class of nanocomposite mat material has been prepared and evaluated for medical devices. A dense medium plasma technique is used for nanoparticles synthesis, which is novel, cost-efficient, and fast technology when is compared with other common nanoparticles synthesis techniques. Carbon based nanoparticles are synthesized from an arc sustained in benzene (purity, 99.5%) between iron electrodes by the lab-made dense medium plasma system. The study first mentions the production of nanoparticles by a pressure of 8 bar argon gas for glow discharge in a period of 9 seconds using a 0.5 cm electrode distance in a liquid environment (volume of benzene: 30 ml). Then, separated carbon nanoparticles are integrated with the PVP nanofibers produced by the electrospinning method. Processing parameters of PVP nanofibers containing carbon nanoparticle (nanocomposites) are optimized with various conditions such as polymer concentration: 7.8-8.0 %w/v, ratio of nanoparticle to polymer solution: 1-3.9 mg /ml, distance of electrode: 10-25 cm, processing time: 5-30 min. All samples are characterized by contact angle measurements, scanning electron microscopy and transmission electron microscopy. At the same time, electrical conductivity of nanocomposite mats are tested for foreseeing usage in biomedical application. Results showed that carbon nanoparticles have diameters in 25 ± 5.4 nm. New nanocomposite material production is proven by transmission electron microscopy. It is a super hydrophilic mat material (static contact angle is lower than 10°). According to the optimization of processing parameters, the diameters of nanocomposite fibers reach down to 150 ±75 nm., Nanocomposite mat resistance is found to be dramatically higher than that for the bare PVP nanofiber mat resistance. According to these results, usage in biomedical application of new material was discussed. It has a great potential to use as biocompatible, light, insulator new material.
INTRODUCTION Recently, considerable attention has been paid to polymer nanofibers, as they exhibit outstanding properties such as a high specific surface area and high porosity [1]. These polymer nanofibers can be use
Data Loading...