Circular RNA circ_HN1 facilitates gastric cancer progression through modulation of the miR-302b-3p/ROCK2 axis

  • PDF / 6,926,373 Bytes
  • 14 Pages / 595.276 x 790.866 pts Page_size
  • 9 Downloads / 189 Views

DOWNLOAD

REPORT


Circular RNA circ_HN1 facilitates gastric cancer progression through modulation of the miR‑302b‑3p/ROCK2 axis Ding Wang1,2 · Xiaohui Jiang2 · Yi Liu3 · Guangxin Cao2 · Xueliang Zhang2 · Yuting Kuang1  Received: 3 June 2020 / Accepted: 2 September 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract Gastric cancer (GC) is a malignant tumor with high morbidity and mortality in the world. Circular RNA hsa_circHN1_005 (circ_HN1), also termed as hsa_circ_0045602, is reported as an oncogene in GC. However, the molecular mechanism of circ_HN1 in GC development has not been fully explored. Here, we surveyed the regulatory mechanism of circ_HN1 in GC progression. The levels of circ_HN1, miR-302b-3p, and rho-associated coiled-coil containing protein kinase 2 (ROCK2) mRNA were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, colony formation, cell cycle progresion, migration, and invasion were determined by using cell counting, flow cytometry, colony formation, or transwell assays. Protein levels were detected with Western blotting. The relationship between circ_HN1 or ROCK2 and miR-302b-3p was verified via dual luciferase reporter or RNA immunoprecipitation (RIP) assays. The role of circ_HN1 in vivo was confirmed by xenograft assay. We observed that circ_HN1 and ROCK2 were upregulated while miR-302b-3p was downregulated in GC tissues and cells. Circ_HN1 silencing slowed tumor growth in vivo and impeded cell proliferation migration, invasion, and facilitated cell apoptosis in GC cells in vitro. Circ_HN1 sponged miR-302b-3p to regulate ROCK2 expression. MiR-302b-3p inhibitor reversed circ_HN1 silencing-mediated influence on the malignant behaviors of GC cells. Furthermore, ROCK2 overexpression restored miR-302b-3p mimic-mediated impacts on cell malignant behaviors in GC cells. In conclusion, circ_HN1 exerted an oncogenic role in GC through upregulating ROCK2 via sponging miR-302b-3p, offering evidence that circ_HN1 is a potential target for GC therapy. Keywords  GC · circ_HN1 · miR-302b-3p · ROCK2 Abbreviations GC Gastric cancer circ_HN1 Circular RNA circ_HN1

Electronic supplementary material  The online version of this article (https​://doi.org/10.1007/s1101​0-020-03897​-2) contains supplementary material, which is available to authorized users. * Yuting Kuang [email protected] 1



Department of General Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, No. 188, Shizi Street, Suzhou 215006, Jiangsu, China

2

Department of General Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China

3

Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China





ROCK2 Rho-associated coiled-coil containing protein kinase 2 qRT-PCR Quantitative real-time polymerase chain reaction CCK-8 Cell counting kit-8 E-cad E-cadherin c-caspase3 Cleaved caspase-3 PCNA Proliferating cell nucle