Computational EEG Analysis Methods and Applications

This book introduces and reviews all of the currently available methods being used for computational electroencephalogram (EEG) analysis, from the fundamentals through to the state-of-the-art. The aim of the book is to help biomedical engineers and m

  • PDF / 7,285,433 Bytes
  • 232 Pages / 453.543 x 683.15 pts Page_size
  • 27 Downloads / 288 Views

DOWNLOAD

REPORT


Chang-Hwan Im Editor

Computational EEG Analysis Methods and Applications

Biological and Medical Physics, Biomedical Engineering

More information about this series at http://www.springer.com/series/3740

BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING The fields of biological and medical physics and biomedical engineering are broad, multidisciplinary and dynamic. They lie at the crossroads of frontier research in physics, biology, chemistry, and medicine. The Biological and Medical Physics, Biomedical Engineering Series is intended to be comprehensive, covering a broad range of topics important to the study of the physical, chemical and biological sciences. Its goal is to provide scientists and engineers with textbooks, monographs, and reference works to address the growing need for information. Books in the series emphasize established and emergent areas of science including molecular, membrane, and mathematical biophysics; photosynthetic energy harvesting and conversion; information processing; physical principles of genetics; sensory communications; automata networks, neural networks, and cellular automata. Equally important will be coverage of applied aspects of biological and medical physics and biomedical engineering such as molecular electronic components and devices, biosensors, medicine, imaging, physical principles of renewable energy production, advanced prostheses, and environmental control and engineering.

Editor-in-Chief: Elias Greenbaum, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

Editorial Board: Masuo Aizawa, Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan Olaf S. Andersen, Department of Physiology, Biophysics and Molecular Medicine, Cornell University, New York, USA Robert H. Austin, Department of Physics, Princeton University, Princeton, New Jersey, USA James Barber, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, England Howard C. Berg, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA Victor Bloomfield, Department of Biochemistry, University of Minnesota, St. Paul, Minnesota, USA Robert Callender, Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA Steven Chu, Lawrence Berkeley National Laboratory, Berkeley, California, USA

Pierre Joliot, Institute de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, France Lajos Keszthelyi, Institute of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary Paul W. King, Biosciences Center and Photobiology, National Renewable Energy Laboratory, Golden, CO, USA Robert S. Knox, Department of Physics and Astronomy, University of Rochester, Rochester, New York, USA Gianluca Lazzi, University of Utah, Salt Lake City, UT, USA Aaron Lewis, Department of Applied Physics, Hebrew University, Jerusalem, Israel Stuart M. Lindsay, Department of Physics and Astronomy, Arizona State University, Tempe, Arizona, USA David Mauzerall, Rockefeller University, New York, New York, USA

Lou