Cytokine profiling of extracellular vesicles isolated from plasma in myalgic encephalomyelitis/chronic fatigue syndrome:

  • PDF / 2,694,419 Bytes
  • 17 Pages / 595.276 x 790.866 pts Page_size
  • 85 Downloads / 185 Views

DOWNLOAD

REPORT


Journal of Translational Medicine Open Access

RESEARCH

Cytokine profiling of extracellular vesicles isolated from plasma in myalgic encephalomyelitis/chronic fatigue syndrome: a pilot study Ludovic Giloteaux1, Adam O’Neal1, Jesús Castro‑Marrero1,2, Susan M. Levine3 and Maureen R. Hanson1* 

Abstract  Background:  Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease of unknown etiology lasting for a minimum of 6 months but usually for many years, with features including fatigue, cognitive impairment, myalgias, post-exertional malaise, and immune system dysfunction. Dysregulation of cytokine signaling could give rise to many of these symptoms. Cytokines are present in both plasma and extracellular vesicles, but little investigation of EVs in ME/CFS has been reported. Therefore, we aimed to characterize the content of extracellular vesicles (EVs) isolated from plasma (including circulating cytokine/chemokine profiling) from individuals with ME/CFS and healthy controls. Methods:  We included 35 ME/CFS patients and 35 controls matched for age, sex and BMI. EVs were enriched from plasma by using a polymer-based precipitation method and characterized by Nanoparticle Tracking Analysis (NTA), Transmission Electron Microscopy (TEM) and immunoblotting. A 45-plex immunoassay was used to determine cytokine levels in both plasma and isolated EVs from a subset of 19 patients and controls. Linear regression, principal component analysis and inter-cytokine correlations were analyzed. Results:  ME/CFS individuals had significantly higher levels of EVs that ranged from 30 to 130 nm in size as compared to controls, but the mean size for total extracellular vesicles did not differ between groups. The enrichment of typical EV markers CD63, CD81, TSG101 and HSP70 was confirmed by Western blot analysis and the morphology assessed by TEM showed a homogeneous population of vesicles in both groups. Comparison of cytokine concentrations in plasma and isolated EVs of cases and controls yielded no significant differences. Cytokine-cytokine correlations in plasma revealed a significant higher number of interactions in ME/CFS cases along with 13 inverse correlations that were mainly driven by the Interferon gamma-induced protein 10 (IP-10), whereas in the plasma of controls, no inverse relationships were found across any of the cytokines. Network analysis in EVs from controls showed 2.5 times more significant inter-cytokine interactions than in the ME/CFS group, and both groups presented a unique negative association. Conclusions:  Elevated levels of 30-130 nm EVs were found in plasma from ME/CFS patients and inter-cytokine cor‑ relations revealed unusual regulatory relationships among cytokines in the ME/CFS group that were different from

*Correspondence: [email protected] 1 Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY 14853, USA Full list of author information is available at the end of the article © The Author(s) 2020. This article is