Effects of daily 24-gram doses of rice or whey protein on resistance training adaptations in trained males

  • PDF / 1,070,928 Bytes
  • 15 Pages / 595.276 x 790.866 pts Page_size
  • 61 Downloads / 193 Views

DOWNLOAD

REPORT


(2020) 17:60

RESEARCH ARTICLE

Open Access

Effects of daily 24-gram doses of rice or whey protein on resistance training adaptations in trained males Jessica M. Moon1 , Kayla M. Ratliff1, Julia C. Blumkaitis1, Patrick S. Harty2 , Hannah A. Zabriskie3 , Richard A. Stecker1, Brad S. Currier1, Andrew R. Jagim4 , Ralf Jäger5 , Martin Purpura5 and Chad M. Kerksick1*

Abstract Background: Large (48-g), isonitrogenous doses of rice and whey protein have previously been shown to stimulate similar adaptations to resistance training, but the impact of consuming smaller doses has yet to be compared. We evaluated the ability of 24-g doses of rice or whey protein concentrate to augment adaptations following 8 weeks of resistance training. Methods: Healthy resistance-trained males (n = 24, 32.8 ± 6.7 years, 179.3 ± 8.5 cm, 87.4 ± 8.5 kg, 27.2 ± 1.9 kg/m2, 27.8 ± 6.0% fat) were randomly assigned and matched according to fat-free mass to consume 24-g doses of rice (n = 12, Growing Naturals, LLC) or whey (n = 12, NutraBio Labs, Inc.) protein concentrate for 8 weeks while completing a standardized resistance training program. Body composition (DXA), muscular strength (one-repetition maximum [1RM]) and endurance (repetitions to fatigue [RTF] at 80% 1RM) using bench press (BP) and leg press (LP) exercises along with anaerobic capacity (Wingate) were assessed before and after the intervention. Subjects were asked to maintain regular dietary habits and record dietary intake every 2 weeks. Outcomes were assessed using 2 × 2 mixed (group x time) factorial ANOVA with repeated measures on time and independent samples t-tests using the change scores from baseline. A p-value of 0.05 and 95% confidence intervals on the changes between groups were used to determine outcomes. Results: No baseline differences (p > 0.05) were found for key body composition and performance outcomes. No changes (p > 0.05) in dietary status occurred within or between groups (34 ± 4 kcal/kg/day, 3.7 ± 0.77 g/kg/day, 1.31 ± 0.28 g/kg/day, 1.87 ± 0.23 g/kg/day) throughout the study for daily relative energy (34 ± 4 kcals/kg/day), carbohydrate (3.7 ± 0.77 g/kg/day), fat (1.31 ± 0.28 g/kg/day), and protein (1.87 ± 0.23 g/kg/day) intake. Significant main effects for time were revealed for body mass (p = 0.02), total body water (p = 0.01), lean mass (p = 0.008), fat-free mass (p = 0.007), BP 1RM (p = 0.02), BP volume (p = 0.04), and LP 1RM (p = 0.01). Changes between groups were similar for body mass (− 0.88, 2.03 kg, p = 0.42), fat-free mass (− 0.68, 1.99 kg, p = 0.32), lean mass (− 0.73, 1.91 kg, p = 0.37), fat mass (− 0.48, 1.02 kg, p = 0.46), and % fat (− 0.63, 0.71%, p = 0.90). No significant between group differences were seen for BP 1RM (− 13.8, 7.1 kg, p = 0.51), LP 1RM (− 38.8, 49.6 kg, p = 0.80), BP RTF (− 2.02, 0.35 reps, p = 0.16), LP RTF (− 1.7, 3.3 reps, p = 0.50), and Wingate peak power (− 72.5, 53.4 watts, p = 0.76) following the eight-week supplementation period. (Continued on next page)

* Correspondence: [email protected] 1 Exercise and Performan