Spatio-Temporal Distribution, Ecological Risk Assessment, and Multivariate Analysis of Heavy Metals in Bathinda District
- PDF / 8,253,483 Bytes
- 32 Pages / 547.087 x 737.008 pts Page_size
- 60 Downloads / 260 Views
Spatio-Temporal Distribution, Ecological Risk Assessment, and Multivariate Analysis of Heavy Metals in Bathinda District, Punjab, India Naseer Ahmad & Puneeta Pandey
Received: 19 March 2020 / Accepted: 13 July 2020 # Springer Nature Switzerland AG 2020
N. Ahmad : P. Pandey (*) Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India e-mail: [email protected]
contaminated at most of the sites with a few cases where the soil was minimally enriched with heavy metals. Other pollution indices such pollution load index (PLI) and degree of contamination (Cd) also indicated low to moderate level of soil contamination. Besides, risk assessment of heavy metals was also determined using potential ecological risk factor (Ei) and ecological risk index (Ri) which indicated low Ei and Ri in the region for most of the metals. Spatial distribution using interpolation technique, Inverse Distance Weighted (IDW) in ArcGIS 10.6.1 software, showed a significant spatial and seasonal variability of heavy metals throughout the region. Pearson’s correlation coefficient (r) between heavy metal variables was found to be significant at p < 0.05 significance level (As-Cr (r = 0.769), As-Fe (r = 0.760), As-Co (r = 0.883), As-Ni (r = 0.886), As-Cu (r = 0.859), As-Hg (r = 0.678) in pre-monsoon samples; As-Fe (r = 0.613), As-Co (r = 0.669), As-Ni (r = 0.619), As-Cu (r = 0.639) in monsoon samples and As-Cr (r = 0.631), As-Fe (r = 0.715), As-Co (r = 0.710), As-Cu (r = 0.690) in post-monsoon samples) indicated a strong relationship between different variables. Principal component analysis (PCA) technique also proved to be significant in studying the behavioral pattern of variables, where PCA biplots showed different behavior as revealed from some strong associations. Finally, continuous monitoring of the sites is suggested to avoid further contamination and degradation of soil quality, despite low contamination levels in the region.
N. Ahmad e-mail: [email protected]
Keywords Monsoon . Spectrometry . Heavy metal . Enrichment . Pollution . Correlation
Abstract The pollution of agricultural soil due to heavy metals is a serious environmental problem throughout the world due to their persistence and toxicity. The present study was carried out on agricultural soils of district Bathinda, Punjab where a total of 120 soil samples were collected from 40 different locations during pre-monsoon, monsoon, and post-monsoon season. The total mean concentration of heavy metals (arsenic (As), chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg), lead (Pb)) was estimated by ThermoScientific–iCAP Qc (Germany) inductively coupled plasma–mass spectrometry (ICP-MS). The concentration of heavy metals was of the order of Fe > Zn > Cr > Ni > Cu > Co > As > Pb > Hg > Cd, Fe > Zn > Cr > Ni > Cu > Co > As > Pb > Hg > Cd, and Fe > Zn > Cr > Ni > Cu > Co > Pb > As > Hg > Cd in pre-monsoon, monsoon, and post-monsoon seasons, respectively. The metals such as Fe, Z
Data Loading...