Bioelastomers in Tissue Engineering
The rapid progress in cell and developmental biology has clearly revealed that substrate elasticity and mechanical stimulation significantly affect cell function and tissue development. Further, many engineered soft-tissue constructs such as vascular graf
- PDF / 779,200 Bytes
- 44 Pages / 439.37 x 666.142 pts Page_size
- 56 Downloads / 250 Views
4
Zhengwei You and Yadong Wang
Contents 4.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.1.1 Matrix Elasticity Impacts Cell and Tissue Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.1.2 Mechanical Stimulation Affects Cell and Tissue Development . . . . . . . . . . . . . . . . . . . 77 4.1.3 Elastic Materials are Important Scaffold Materials for Tissue Engineering . . . . . . . . 79 4.2 Designing Bioelastomers for Tissue Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2.1 Important Considerations in Bioelastomer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2.2 Current State of Bioelastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3 Recent Progress of Synthetic Bioelastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3.1 Polyurethanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3.2 Other Thermoplastic Bioelastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.3.3 Poly(glycerol sebacate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3.4 Other Thermoset Bioelastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.4 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Abstract The rapid progress in cell and developmental biology has clearly revealed that substrate elasticity and mechanical stimulation significantly affect cell function and tissue development. Further, many engineered soft-tissue constructs such as vascular grafts, cardiac patches, and cartilage are implanted in a mechanically dynamic environment, thus successful implants must sustain and recover from various deformations without mechanical irritations to surrounding tissues. Ideal scaffolds for these tissue engineering applications would be made of biodegradable elastomers with properties that resemble those of the extracellular matrix, providing a biomimetic mechanical environment and mechanical stimulation to cells and tissues. However, traditional biodegradable scaffold materials such as polylactide, polyglycolide, and poly(lactide-co-glycolide) are stiff and are subjected to plastic deformation and failure under cyclic strain. Consequently, for the past decade, many novel bioelastomers have been developed and extensively
Data Loading...