Liposomes Methods and Protocols, Volume 1: Pharmaceutical Nanocarrie
With nearly one hundred years of intensive study, lipids have proven to be a vital and ever-more-promising area of cell biological research. In Liposomes: Methods and Protocols, leading experts in the related fields explore cutting-edge experimental metho
- PDF / 14,605,551 Bytes
- 558 Pages / 504 x 720 pts Page_size
- 44 Downloads / 219 Views
in
Molecular Biology™
Series Editor John M. Walker School of Life Sciences University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK
For other titles published in this series, go to www.springer.com/series/7651
Liposomes Methods and Protocols Volume 1: Pharmaceutical Nanocarriers
Edited by
Volkmar Weissig Department of Pharmaceutical Sciences, Midwestern University College of Pharmacy Glendale, Glendale, AZ, USA
Editor Volkmar Weissig Department of Pharmaceutical Sciences Midwestern University College of Pharmacy Glendale Glendale, AZ USA [email protected]
ISSN 1064-3745 e-ISSN 1940-6029 ISBN 978-1-60327-359-6 e-ISBN 978-1-60327-360-2 DOI 10.1007/978-1-60327-360-2 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009933261 © Humana Press, a part of Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Humana Press, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Cover illustration: Background art is derived from Figure 10 in Chapter 26 Printed on acid-free paper Humana Press is a part of Springer Science+Business Media (www.springer.com)
Preface Efforts to describe and model the molecular structure of biological membranes go back to the beginning of the last century. In 1917, Langmuir described membranes as a layer of lipids one molecule thick [1]. Eight years later, Gorter and Grendel concluded from their studies that “the phospholipid molecules that formed the cell membrane were arranged in two layers to form a lipid bilayer” [2]. Danielli and Robertson proposed, in 1935, a model in which the bilayer of lipids is sequestered between two monolayers of unfolded proteins [3], and the currently still accepted fluid mosaic model was proposed by Singer and Nicolson in 1972 [4]. Among those landmarks of biomembrane history, a serendipitous observation made by Alex Bangham during the early 1960s deserves undoubtedly a special place. His finding that exposure of dry phospholipids to an excess of water gives rise to lamellar structures [5] has opened versatil
Data Loading...