Modulation of Chemical and Biological Properties of Biomedically Relevant Guest Molecules by Cucurbituril-Type Hosts

Cucurbituril-type (CB-type) molecules have played key roles in host-guest chemistry as well as supramolecular chemistry. Along with the development and synthetic expansion of CB-type molecules during the past two decades, their applications in a variety o

  • PDF / 1,386,460 Bytes
  • 25 Pages / 439.37 x 666.142 pts Page_size
  • 102 Downloads / 206 Views

DOWNLOAD

REPORT


24

Hang Yin, Ziyi Wang, and Ruibing Wang

Contents 24.1 24.2 24.3

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In Vitro and In Vivo Biocompatibility of CB-Type Host Molecules . . . . . . . . . . . . . . . . . . . Influence of CB-Type Hosts on the Chemical Properties of Biomedically Relevant Guest Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.3.1 pKa Shift of Guest Drugs or Biomolecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.3.2 Solubility Enhancement of Guest Drugs or Biomolecules . . . . . . . . . . . . . . . . . . . . 24.3.3 Stability Improvements of Guest Drugs or Biomolecules . . . . . . . . . . . . . . . . . . . . . 24.4 Influence of CB-Type Hosts on the Biological Properties of Biomedically Relevant Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.4.1 Modulation of the Therapeutic Efficacy of Guest Drugs or Biomolecules . . . 24.4.2 Inhibition/Reversal of Toxicities of Guest Drugs or Biomolecules . . . . . . . . . . . 24.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24.1

647 650 650 650 653 655 657 657 661 665 666

Introduction

Supramolecular chemistry has been developed for over 50 years since the concept was raised in 1967 by Pedersen [1, 2]. Among all the supramolecular systems, macrocyclic molecules, including crown ether, cyclodextrin, calixarene, cucurbituril, and pillararene, have played essential roles as they are the fundamental building blocks and have been widely studied in various research areas [3]. Cucurbit [n]urils (CB[n]s, n = 5–8, 10, 13–15) (Fig. 1), generally considered as the fourth generation of macrocyclic molecules, have emerged and attracted increasing interests from scientists since 2000 when CB[5], CB[7], and CB[8] were isolated and

H. Yin · Z. Wang · R. Wang (*) State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China e-mail: [email protected]; [email protected] © Springer Nature Singapore Pte Ltd. 2020 Y. Liu et al. (eds.), Handbook of Macrocyclic Supramolecular Assembly, https://doi.org/10.1007/978-981-15-2686-2_28

647

648

H. Yin et al.

Fig. 1 Chemical structures of macrocyclic CB[n]s (n = 5–8, 10, 13–15) and acyclic CB-type molecules, M1 and M2

characterized by Kim and Day groups independently [3–6]. The typical CB[n]s and their derivatives contain two carbonyl-rimmed portals and one hydrophobic cavity, whic