Nitric oxide production is involved in maintaining energy state in Alfalfa ( Medicago sativa L. ) nodulated roots under

  • PDF / 1,028,324 Bytes
  • 7 Pages / 595.276 x 790.866 pts Page_size
  • 77 Downloads / 193 Views

DOWNLOAD

REPORT


SHORT COMMUNICATION

Nitric oxide production is involved in maintaining energy state in Alfalfa (Medicago sativa L.) nodulated roots under both salinity and flooding Fatma Aridhi1,2 · Hajer Sghaier1 · Allyzée Gaitanaros2 · Ayda Khadri1 · Samira Aschi‑Smiti1 · Renaud Brouquisse2  Received: 26 April 2020 / Accepted: 8 July 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract Main conclusion In Medicago sativa nodulated roots, NR-dependent NO production is involved in maintaining energy state, presumably through phytoglobin NO respiration, under both salinity and hypoxia stress. Abstract  The response to low and average salinity stress and to a 5 day-long flooding period was analyzed in M. sativa nodulated roots. The two treatments result in a decrease in the biological nitrogen fixation capacity and the energy state (evaluated by the ATP/ADP ratio), and conversely in an increase nitric oxide (NO) production. Under salinity and hypoxia treatments, the use of either sodium tungstate, an inhibitor of nitrate reductase (NR), or carboxy-PTIO, a NO scavenger, results in a decrease in NO production and ATP/ADP ratio, meaning that NR-dependent NO production participates to the maintenance of the nodulated roots energy state. Keywords  Hypoxia · Legume · Nitrogen-fixing symbiosis · Phytoglobin NO respiration · Salt stress

Communicated by Dorothea Bartels. Electronic supplementary material  The online version of this article (https​://doi.org/10.1007/s0042​5-020-03422​-1) contains supplementary material, which is available to authorized users. * Renaud Brouquisse [email protected]

Abbreviations ARA​ Acetylene reducing activity BNF Biological nitrogen fixation cPTIO 2-[4-carboxyphenyl]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide DAF-2 4,5-diaminofluorescein NR Nitrate reductase Phytogb Phytoglobin

Fatma Aridhi [email protected]

Introduction

Hajer Sghaier [email protected]

Nitric oxide (NO) is a reactive gaseous molecule with a broad spectrum of regulatory functions in plant growth and development (Besson-Bard et al. 2008), and response to biotic (Hichri et al. 2015; Thalineau et al. 2016) and abiotic stresses, including salinity and hypoxia (Blokhina and Fagerstedt 2010; Simontacchi et al. 2015). Under salt stress, enhancement of NO production is accompanied by the exclusion of ­Na+ and retention of K ­ +, through increased + + membrane ­H -ATPase and ­H -PPase activities (Zhang et al. 2006; Wang et al. 2009; Zhao et al. 2018). NO induces the expression of genes related to osmotic adjustment, heatshock protein, and ROS-scavenging processes (Uchida et al. 2002; Kopyra and Gwózdz 2003). It contributes to the

Allyzée Gaitanaros [email protected] Ayda Khadri [email protected] Samira Aschi‑Smiti [email protected] 1



Unité de Recherche d’Ecologie Végétale, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire Farhat Hached, Tunis, Tunisia



UMR INRAE 1355, CNRS 7254, Université Côte d’Azur, Institut Sophia Agrobiotech, So