Blends of synthetic plastic-derived polypeptide with Hydroxypropylmethylcellulose and polyvinyl alcohol: unraveling the
- PDF / 4,795,017 Bytes
- 15 Pages / 595.276 x 790.866 pts Page_size
- 61 Downloads / 204 Views
ORIGINAL PAPER
Blends of synthetic plastic-derived polypeptide with Hydroxypropylmethylcellulose and polyvinyl alcohol: unraveling the specific interaction parameters, morphology and thermal stability of the polymers couple B Mahesh 1
&
D Kathyayani 1 & D Channe Gowda 2 & K Mrutunjaya 3
Received: 2 March 2020 / Accepted: 7 July 2020 / Published online: 22 August 2020 # The Polymer Society, Taipei 2020
Abstract The medleys of the plastic-derived polypeptide with commercially available polymers believably the suitable candidate for pharmaceutical and biomedical importance. The current research is focussed on the synthesis of a novel plastic-mimetic polypeptide (PLP), poly(IPAVG) by the solution phase method (where I, P, A, V, and G represent Isoleucine, Proline, Alanine, Valine, and Glycine, respectively). The miscibility attributes of PLP/polyvinyl alcohol (PVA) and PLP/ hydroxypropylmethylcellulose (HPMC) blends were examined by viscometry and by other advanced analytical tools for different weight proportions. It is shown by the viscometry that the PLP/HPMC and PLP/PVA form an immiscible blend system at 10 ο C and further, the FTIR spectra of poly (IPAVG) /HPMC and poly (IPAVG) /PVA blend membranes manifest the lack of intermolecular interactions. DSC results proved the dual Tg for one blend proportion and lower Tg values for all other blend systems. The thermal property of the blends with different compositions was evaluated by thermogravimetric analysis (TGA). The TGA results showed that the blends possess inferior thermal stability to the native ones. The surface morphology was analyzed by SEM indicated the heterogeneity and X-ray diffraction (XRD) revealed the absence of any change in crystallinity advocated the immiscibility of the blends. Further, we ventured to prepare the non-woven fabrics from the solutions of 1–10 wt% concentrations at the voltages within 20–30 kV by electrospinning. The droplet formed at the spinneret failed to reach the collector plate, and consequently, no films developed for the collector device.
Keywords Plastic derived polypeptide . HPMC . PVA . Blends . Specific interaction parameters
Introduction
Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10965-020-02191-5) contains supplementary material, which is available to authorized users. * B Mahesh [email protected] 1
Department of Chemistry, JSS Academy of Technical Education ( Affiliated to Visvesvaraya Technological University, Belagavi), Dr.Vishnuvardhan Road, Bengaluru 560060, India
2
Department of Studies in Chemistry, Manasagangotri, University of Mysore, Mysuru 570 006, India
3
Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570 015, India
Protein-based polymers are the macromolecules having the peptides with the repeat sequence of amino acids vary from two to hundreds of amino acid residues [1]. These polymers profer biological functionalities, and they respond to external stimuli, viz., light, pH, temper
Data Loading...