Towards an understanding of the role of intrinsic protein disorder on plant adaptation to environmental challenges

  • PDF / 3,861,627 Bytes
  • 10 Pages / 595.276 x 790.866 pts Page_size
  • 94 Downloads / 163 Views

DOWNLOAD

REPORT


ORIGINAL PAPER

Towards an understanding of the role of intrinsic protein disorder on plant adaptation to environmental challenges Jesús Alejandro Zamora-Briseño 1 & Alejandro Pereira-Santana 2,3 & Sandi Julissa Reyes-Hernández 1 & Daniel Cerqueda-García 4 & Enrique Castaño 5 & Luis Carlos Rodríguez-Zapata 1 Received: 1 May 2020 / Revised: 31 July 2020 / Accepted: 27 August 2020 # Cell Stress Society International 2020

Abstract Intrinsic protein disorder is an interesting structural feature where fully functional proteins lack a three-dimensional structure in solution. In this work, we estimated the relative content of intrinsic protein disorder in 96 plant proteomes including monocots and eudicots. In this analysis, we found variation in the relative abundance of intrinsic protein disorder among these major clades; the relative level of disorder is higher in monocots than eudicots. In turn, there is an inverse relationship between the degree of intrinsic protein disorder and protein length, with smaller proteins being more disordered. The relative abundance of amino acids depends on intrinsic disorder and also varies among clades. Within the nucleus, intrinsically disordered proteins are more abundant than ordered proteins. Intrinsically disordered proteins are specialized in regulatory functions, nucleic acid binding, RNA processing, and in response to environmental stimuli. The implications of this on plants’ responses to their environment are discussed. Keywords Intrinsic disorder . Monocots . Eudicots . Stress . Nucleus

Introduction The traditional structure-function paradigm states protein function depends on a well-defined three-dimensional structure. However, there are regions of proteins and even

* Luis Carlos Rodríguez-Zapata [email protected] 1

Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43, Número 130, Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México

2

División de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del estado de Jalisco, Camino Arenero 1227, El Bajio, C.P. 45019 Zapopan, Jalisco, México

3

Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnologia, Av. Insurgentes Sur 1582, Alcaldía Benito Juárez, C.P. 03940 Ciudad de México, México

4

Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional- Unidad Mérida, Carr. Mérida - Progreso, colonia Loma Bonita, C.P. 97205 Mérida, Yucatán, México

5

Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, Número 130, Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México

complete proteins that are fully functional even though they do not fold into secondary or tertiary structures in solution (Uversky 2011; Pancsa and Tompa 2012). These proteins are known as intrinsically disordered regions/proteins (IDRs/IDPs) and are present in all domains of life (Xue et al. 2010; Xue et al. 2012; Yruela et al. 2017). In eukaryotes, it is estimated that between 23