Stabile Modulformen und Eisensteinreihen

  • PDF / 9,481,341 Bytes
  • 151 Pages / 468 x 684 pts Page_size
  • 30 Downloads / 174 Views

DOWNLOAD

REPORT


1219 Rainer Weissauer

Stabile Modulformen und Eisensteinreihen

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Lecture Notes in Mathematics Edited by A. Oold and B. Eckmann

1219 Rainer Weissauer

Stabile Modulformen und Eisensteinreihen

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Autor

Rainer Weissauer Mathematisches lnstitut, Universitat Heidelberg 1m Neuenheimer Feld 288, 6900 Heidelberg, Federal Republic of Germany

Mathematics Subject Classification (1980): 10-XX

ISBN 3-540-17181-9 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-17181-9·Springer-Verlag New York Berlin Heidelberg CIP-Kurztitelaufnahme der Deutschen Bibliothek. Weissauer, Rainer: Stabile Modulformen und Eisensteinreihen 1Rainer Weissauer. - Berlin; Heidelberg; New York; London; Paris; Tokyo: Springer, 1986. (Lecture notes in mathematics; 1219) ISBN 3-540-17181-9 (Berlin ...) ISBN 0-387-17181-9 (New York ...) NE:GT This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcas1ing, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.

© Springer-Verlag Berlin Heidelberg 1986 Printed in Germany Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 2146/3140-543210

INHALTSVERZEICHNIS 1 Introduction

. . . .

1

2 Stabile Modulformen

7

3 Differentialoperatoren

23

4 Automorphe Formen

45

5 Hyperebenen . .

51

6 Eisensteinreihen

59

7 Eisensteinreihen vom Klingenschen Typ

68

8 Ableitungen der Klingenschen Eisensteinreihen

80

9 Polstellen der Eisensteinreihen

84

10 Der Grenzfall k -- n+2j +l 11 Das holomorphe diskrete Spektrum yon

.97

L 2 (r n \G)

108

12 Der Operator M(p, s)

112

13 Stabile Liftungen

123

14 Die Siegelschen Eisensteinreihen

131

Literaturverzeichnis

142

Symbolverzeichnis

144

Schlagwortindex

146

III

1 INTRODUCTION The central theme of this book is the so called Siegel -operator arising in the theory of Siegel modular forms. Is F a holomorphic modular form of weight k on Siegel's upper half space

a, = { Z = z(n) = Z'

: Im(Z) >

of degree n, then the -operator given by ( F) (Z)

=

o}

lim F(

defines another

modular form F of the same weight on Siegel's upper half space of degree one less. If the weight is large enough every modular form of even weight on H n -

1

can be obtained in

this way. This was shown first by Maaf using the theory of Poincare series [26] and then later by Klingen [16] using Eisenstein series. For this one usually has to define Eisenstein series of the following type

G(Z) = Lg(1I"(M(Z))) det(GZ + D)-k M

where 9 is a cuspform on Hi of weight k, Here 11" denotes the projection of H n on Hi, which maps a matrix Z to its upper j by j submatrix, Finally M(Z) = (AZ + B)(GZ + D)-l denotes the action of a symplectic matrix M

=

on