Genome-wide identification and characterization of GRAS genes in soybean ( Glycine max )

  • PDF / 8,082,177 Bytes
  • 21 Pages / 595.276 x 790.866 pts Page_size
  • 107 Downloads / 210 Views

DOWNLOAD

REPORT


RESEARCH ARTICLE

Open Access

Genome-wide identification and characterization of GRAS genes in soybean (Glycine max) Liang Wang, Xianlong Ding, Yingqi Gao and Shouping Yang*

Abstract Background: GRAS proteins are crucial transcription factors, which are plant-specific and participate in various plant biological processes. Thanks to the rapid progress of the whole genome sequencing technologies, the GRAS gene families in different plants have been broadly explored and studied. However, comprehensive research on the soybean (Glycine max) GRAS gene family is relatively lagging. Results: In this study, 117 Glycine max GRAS genes (GmGRAS) were identified. Further phylogenetic analyses showed that the GmGRAS genes could be categorized into nine gene subfamilies: DELLA, HAM, LAS, LISCL, PAT1, SCL3, SCL4/7, SCR and SHR. Gene structure analyses turned out that the GmGRAS genes lacked introns and were relatively conserved. Conserved domains and motif patterns of the GmGRAS members in the same subfamily or clade exhibited similarities. Notably, the expansion of the GmGRAS gene family was driven both by gene tandem and segmental duplication events. Whereas, segmental duplications took the major role in generating new GmGRAS genes. Moreover, the synteny and evolutionary constraints analyses of the GRAS proteins among soybean and distinct species (two monocots and four dicots) provided more detailed evidence for GmGRAS gene evolution. Cis-element analyses indicated that the GmGRAS genes may be responsive to diverse environmental stresses and regulate distinct biological processes. Besides, the expression patterns of the GmGRAS genes were varied in various tissues, during saline and dehydration stresses and during seed germination processes. Conclusions: We conducted a systematic investigation of the GRAS genes in soybean, which may be valuable in paving the way for future GmGRAS gene studies and soybean breeding. Keywords: Soybean, GRAS, Genome-wide, Evolutionary analyses, Expression patterns, Saline and dehydration stresses, Seed germination

* Correspondence: [email protected] Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095,, China © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the