Dielectric Materials for Microelectronics

Dielectrics are an important class of thin-film electronic materials for microelectronics. Applications include a wide swathe of device applications, including active devices such as transistors and their electrical isolation, as well as passive devices,

  • PDF / 2,093,631 Bytes
  • 33 Pages / 547.146 x 686 pts Page_size
  • 0 Downloads / 207 Views

DOWNLOAD

REPORT


28. Dielectric Materials for Microelectronics

Dielectric Mat

This chapter considers the role of dielectric materials in microelectronic devices and circuits and provides a survey of the various materials employed in their fabrication. We will examine the impact of scaling on these materials, and the various materials utilized for their dielectric behavior. Extensive reviews are available on the device characteristics for the reader to consult [28.4–7]. We will primarily confine the discussion here to Si-based microelectronic circuits. Dielectric materials are an integral element of all microelectronic circuits. In addition to their primary function of electrical isolation of circuit and device components, these materials also provide useful chemical and interfacial properties. The material (and result-

28.0.1 The Scaling of Integrated Circuits. 625 28.0.2 Role of Dielectrics for ICs ............ 629 28.1 Gate Dielectrics ................................... 28.1.1 Transistor Structure ................... 28.1.2 Transistor Dielectric Requirements in View of Scaling . 28.1.3 Silicon Dioxide .......................... 28.1.4 Silicon Oxynitride: SiOx Ny ........... 28.1.5 High-κ Dielectrics .....................

630 630 630 635 641 643

28.2 Isolation Dielectrics ............................. 647 28.3 Capacitor Dielectrics............................. 28.3.1 Types of IC Memory .................... 28.3.2 Capacitor Dielectric Requirements in View of Scaling...................... 28.3.3 Dielectrics for Volatile Memory Capacitors .... 28.3.4 Dielectrics for Nonvolatile Memory .............

647 647 648 648 649

28.4 Interconnect Dielectrics........................ 651 28.4.1 Tetraethoxysilane (TEOS) ............. 651 28.4.2 Low-κ Dielectrics ...................... 651 28.5 Summary ............................................ 653 References .................................................. 653 of the survey presented here are selected from work previously published by the author [28.1–3].

ing electrical) properties of dielectrics must also be considered in the context of the thin films used in semiconductor microelectronics, as compared to bulk properties. The dimensions of these dielectric thin films are determined by the device design of the associated integrated circuit technology, and these dimensions decrease due to a calculated design process called scaling.

28.0.1 The Scaling of Integrated Circuits The ability to reduce the size of the components of integrated circuits (ICs), and therefore the circuits themselves, has resulted in substantial improvements in device and circuit speeds over the last 30 years. Equally

Part C 28

Dielectrics are an important class of thinfilm electronic materials for microelectronics. Applications include a wide swathe of device applications, including active devices such as transistors and their electrical isolation, as well as passive devices, such as capacitors. In a world dominated by Si-based device technologies, the properties of thin-film dielectric materials span several a